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Similarity solutions in fragmentation kinetics 

G Baumann, M Freyberger, W G Glockle and T F Nonnenmacher 
Department of Mathematical Physics, University of Ulm, Alhen-Einstein-Allee 11, 
D-7900 Ulm, Federal Republic of Germany 

Received 4 March 1991 i n  final form 1 July 1991 

Abdraet. For different homogeneous fragmentation models we derive a common inregro- 
differential equation. We assume that the fragmentation rate is homogeneous of order y 
in both arguments. A reduction of the integro-differential equation to a partial differential 
equation delivers different types of similarity solutions by applying Lie's similarity method. 
Calculation of the adjoint algebra performs a classification of the non-trivial solutions. 

1. Introduction 

In several fields of physics (polymer science, mineralogy, combustion theory, neutron 
transport theory) the fragmentation process is of considerable interest. The early work 
on this theme was done by Kuhn (1930), Mark and Simha (19401, and Montroll and 
Simha (1940) in polymer science. These authors determined the distribution function 
by statistical methods considering 'random scission' processes where all bonds break 
with equal probability (Montroll and Simha 1940). Later on Saito (1958) and Jellinek 
and White (1951) gave continuous and discrete models, respectively, of a fragmentation 
process. The continuous model introduced by Saito (1958) has a wide application in 
physics; for references see Peterson (1986). 

Much of the theoretical work is based on the description of fragmentation by a 
system of linear rate equations in the discrete form which are suitable for numerical 
analysis. For an analytical treatment of fragmentation the continuous models are mure 
appropriate. The continuous models are typically represented by a linear integro- 
differential balance equation. In a generalized nonlinear model Cheng and Redner 
(1988) proposed a fragmentation process caused by repeated collisions between clusters. 
Amemiyd (1962) introduced on the other hand an inhomogeneity by having bonds of 
different breaking probability dispersed throughout the system. Dependence of the 
scission rate on the size of the chain was considered by Basedow et a /  (1978) and 
Ballauf and Wolf (1981) in theoretical and numerical works. 

In our considerations we are interested in models where the breakup rate depends 
upon size. I n  such models the cutting is non-random in the sense that bonds on different 
chains break with different probability. We examine continuous models with 
homogeneous breakup rates in the kinetic equation. We hnd that the asymptotic form 
of the size distribution at large segment size is strongly determined by the homogeneity 
index of the breakup kernel. The continuous model is also somewhat more interesting 
analytically, since the determination of the solutions is for some models quite obvious. 
Special solutions for fragmentation of the continuous model have been discussed by 
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McCrady and Ziff (1987), and Corngold and Williams (1989). In a work on similarity 
solutions Peterson (1986) applied the fragmentation model to particle fragmentation. 

Starting out from the kinetic equation of Ziff and McGrady (1985) with 
homogeneous forms ofthe breakup kernel we will determine general similarity solutions 
based on Lie's method. When particle breakup takes place independently and 
homogeneously, the evolution of the number of chains n ( x ,  I) of continuous length x 
at time f can he described by 

where F ( x ,  y )  gives the rate that a segment breaks up into two parts of length x and 
y .  For details of the model see Ziff and McGrady (1985). Since equation (1) is linear 
it can be solved in principle for any breakup function. Several non-homogeneous 
breakup r'unciions are given by Peierson (i986j. Out consideraiions here will only iake 
into account homogeneous breakup kernels. 

The paper is organized as follows. First we will demonstrate that certain models 
with homogeneous breakup kernel can be cast into a common equation. In section 2 
we give a similarity solution for the generalized model. With the similarity solution 
on hand we can demonstrate that for a subclass of homogeneous kernels F ( x ,  y )  a 
scaling behaviour i s  possible. To characterize the asymptotic behaviour of our solutions 
for large I and small x we consider the self-similar properties of these results. We 
demonstrate that a similarity solution for homogeneous kernels F ( x ,  y )  can be given 
by u ( x ,  t) =s"*(t)u([), where the similarity variable < is given by [ =  fxYf1, and s is 
a function of time. This type of solution corresponds to an infinitesimal scaling 
invariance under which the corresponding partial differential equation ( PDE) of 
-n..u+inn ( I \  ;c i n r i o r i o n t  fnr hnmnn-n-n-nc LemplE Annthrr  tvne nf c i m i l 2 r i t v  c n h n t i n n  LyYY,."., \., .., ..l.Y..y.l~ .". .."..."b'L.'"Y~ ...... -. .Jy- ". "I ..I.." ..., _1"."..".. 

is given by u ( x ,  1) =exp(iact')o(<) with < =xYt ' -  cf which is a moving wave solution 
for y = 0. 

2. Breakup kernels of F(Ax, Ay)  = A 'F(x ,  y )  

Let us first consider systems possessing F ( x , y ) = ( x + y ) "  as kernel. Here the rate of 
breakup is proportional to the length of the chain to the power a. Setting a = 0, the 
equi-reactivity model of Montroll and Simha (1940) is recovered. In a further 
examination, we discuss a model for which the breakup depends upon the size of the 
second object breaking up ( x + y )  and upon the individual size of the first piece. The 
breakup kernel for such a process is given by F ( x , y ) = x " ( x + y ) " "  considered by 
McGrady and Ziff (1987). A special case of this model is obtained if we set p = 2v. 
To demonstrate the homogeneity of the kernels F ( x , y )  we have to consider the 
equations F(Ax, Ay)  = A'F(x ,  y ) ,  Performing the simple calculation one obtains 

(i) F ( x ,  Y 1 = (x + y)"  : F(Ax,  A y )  = A"F(x,  y )  
(ii) F ( x , y )  = x " ( y + x ) ' - "  : F ( A X ,  A Y )  = A ~ F ( X ,  y )  
(i i i)  ~ Flx .  \ ~ ~ , ,  w ) = x " ( y + x ) "  I : ,=(AX: A Y )  = A'"F(x, y ) .  

The exponents a, p and v determine the degree of homogeneity of these models. 
Determining the kinetic equation for each model (i)-(iii) we can write 
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for model (i), and  

I:" (31 
1 

U + l  
nf(x, f)=--xxB+'n(x, t )+2xy y""n(y, t) d y  

for model ( i i )  and (iii), which is closely related to the model of McGrady and Ziff 
(1987) with an asymmetric kernel. The  physical conditions under which (3) is valid 
are also given in the cited paper. Here we will give a straightforward procedure to 
wive ihir rquaiion. if one  muiiipiies equation (3) wiih a Facior x-" and subsiiiuies 
g(x, t)=x-"n(x, t )  in (3) it is possible to reformulate ( 3 )  to 

Comparing the equations (2) and (4) we conclude that it is crucial to solve an equation 
i i le 

u,(x,f)=-dxYt1u(x,rj+2 ( 5 )  

where 
for (i) 
for (ii) and  (iii) 

and  
a for ( i )  

for (ii) 
2 u  for (i i i) , 

We have to assume that ai least u(n+uo, I )  goes stronger to 0 than n-'-' to be  on the 
safe side respecting the convergence of the integral in ( 5 ) .  The general solutions for 
each model are then given by 

n ( x ,  t ) =  u ( x ,  1) 

n ( x ,  r)=x'u(x, t )  

for (i) 

for ( i i j  and (iii) 

respectively. The corresponding PDE to (5) is obtained by differentiating with respect 
io x 

u, , (x ,  t ) =  - x ' ( d ( y +  1 j +2)u(x, t )  -dx"'u,(x, t )  (8) 
where d and  y are given by (6) and  (7). If we set d =  1 and y = O  we obtain the 
equi-reactivity model of Montroll and  Simha (1940) in ihe form 

=-nu, -3u. (9) 
In the following we will apply the  similarity method to (8) i n  order to obtain 

solutions for the different models. 

1 Cimilprit.r..lrl,ltinn "f +ha lrinntir on..ntinn >. " ...... "..,J-'V.Y&.V.. -. .... _....,... ...+""...,.. 
The common kinetic equation for homogeneous scaling kernels is given by 

II,(X, I ) = - ~ s ~ + ' u ( x ,  t ) + 2  
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Equation (10) is equivalent to the partial differential equation (PDE) 

U,, = B x y u ( x ,  I ) + A x Y + ' u ,  ( 1 1 )  

where B = - { d ( y + l ) + 2 ) ,  and A = -d .  To consider the symmetries of the linear PDE 

( 1  1 )  we have to examine a one-parameter group G of transformations 

x* =. f (x ,  U ;  E )  U* = $ ( X ,  U ;  E )  (12) 

in the space R"tm with variables x = ( x ' ,  . . . , x " )  and U = (U', . . ., U"). In our case 
we have n = 2 and m = 1.  The identity of transformation (12) is given by x = f l ,  =" and 
U = Now take the additional variables U, = { u f ' l a  = 1 , .  . . , m; i = 1 , .  . . , n) and 
subject them to the transformations 

u T " = * p ( x , u , u , ; E )  ( 1 3 )  

with *f'I.=o= up. We require that (13) and transformations of the derivatives a u " / J x '  
under the change of variables (12) be compatible with the equalities U: = J u " / J x '  for 
any function u y  = u " ( x ) .  This condition uniquely defines the transformation (13) for 
any Lie group G, and the result is a one-parameter group G ,  of transformations (12), 
(13) acting in the space R"+m+n''' with variables ( x ,  U, U,). The mappings (12) are called 
point transformations whereas (13 )  are the prolongations of these point transformation. 
G ,  is the first prolongation of the group G. 

Let 

(14) 
J a 

U = g ( x ,  U )  7+ q " ( x ,  U )  7 
dx dU 

be the infinitesimal operator or vector field of the group G, where 

are the infinitesimal elements of transformation (12). The infinitesimal operator of the 
first prolongation G, is 

where q: = J#Y/'3elF=o are prolongation elements of U,. We assume summation over 
repeated indices. The first and all higher prolongation elements v : ,  qn can be deter- 
mined recursively from the infinitesimals ( and q by 

11: = Di( 11" ) - UP D; (c'). (17) 

Here Di=a/Jx'+u: 'a / '3u" is the operator of total differentiation with respect to the 
variable x', The second prolongation elements q; follow from 

; = D ~ (  7:) - U; D, (5' ). ( 1 8 )  

Since our problem contains a derivation of maximal order two we can restrict our 
considerations to second prolongations. The details of higher prolongations can he 
found in  Olver (1986) or Bluman and Kumei (1989). 

Consider now a system of sth order PIIES 

A(x ,  U, U , ._ . . ,  u , ) = O  (19) 
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where A = (A’,  . . . , A”) = 0 determines a submanifold in ( x ,  U, U,, . . . , U,)-space. If this 
manifold is invariant under the action of the s th  prolongation G, of G, we say that 
the system of differential equations (19) is invariant under the group G.  Let U be  the 
vector field of G. Then the system (19) is invariant under the group G if and only if 

where pri”u is the sth prolongation of the vector field U. Condition (20) is the defining 
equation for the group admitted by the system (19) and contains an explicit algorithm, 
the so-called Lie algorithm (Olver 1986), to determine the infinitesimals 5 and q. 

Let us apply the considerations given above to our problem 

A = U , , - B X ~ U - A X ~ ~ ’ U , = O .  (21) 

In order to determine the point transformations (12) under which (21 )  is invariant one  
has to consider the vector field U of the independent and  dependent variables (x, I, U )  
in the form 

Applying the second prolongation of U to (21) under the restriction A = O  we get a 
system of overdetermined equations from which we can determine 5, T, and 7. The 
relation pr‘21u(A)/o=o = 0 can be cast into 

(23) 

where vi’ and q x  are the second and first prolongation elements needed to determine 
the infinitesimals and 7. We changed notation of (17) and (18) by raising the indices 
of the independent variables to distinguish numeration from differentiation. Solving 
(23) for [, T and 7 one  obtains the vector field (22) in an explicit form. In our case 
the vector field (22) can he derived from a linear combination of the vectors 

7y‘- B ~ X ~ - ’ ~ U  - B X ~ ~  - A ( ~ +  I)~’.$,  AX^+'^^ = O  

l J  a 
U, =- -+ A ( y +  I ) lu -  

x y  ax Ju 

J 
u 3 = u -  

au 

a 
a t  

U,=- 

a 
o,=dJ,(x,  I ) - .  

au 

These five linear independent vector fields determine the symmetries under which (21) 
is invariant. The vector fields u2 and U) contain the scaling properties of (21), U, 
corresponds to a translation in time and us is characteristic for the linear nature of 
(21). &(x, I )  of u5 is an arbitrary solution of (21) and demonstrates the superposition 
principle of linear equations. Thus the corresponding Lie-algebra of infinitesimal 
symmetries of (21) is spanned by the four vector fields U,, . . . , u4 and the infinite- 
dimensional subalgebra o5 = &(x, t)a/du. The commutation relations of these vector 
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fields are given in table 1. The entry in row i and column j is [ u , , ~ , ] ,  respectively. 
From table 1 it can be detected that the antisymmetry of the algebra and the Jacobi 
identity are given. 

In general to each subgroup H of a symmetry group G of a system of differential 
equations there will correspond a family of group-invariant solutions. Since there are 
almost always an infinite number of such subgroups, it is usually not feasible to list 
all possible group-invariant solutions. Nevertheless we need a systematic procedure 
of classifying these solutions which Olver (1986) calls an 'optimal system' from which 
every other solution can be derived. Since elements g e  G not in the subgroup H will 
transform an H-invariant solution to some other group-invariant solution, only these 
solutions not so related have to be listed in an optimal system. 

The key point of these considerations is to find such symmetry solutions which 
cannot be transformed to each other by a symmetry transformation. This can be 
accomplished by introducing the adjoint representation of the Lie algebra. An adjoint 
representation can be derived by Lie series with - & "  

" = O n !  
Ad g(w)=Ad(exp(m))w= 1 -(ad u)"w (25) 

with ad u ( w )  = [w, U] (cf Olver 1986). To demonstrate the determination of the adjoint 
algebra from the Lie algebra we give the mapping of u2 by the element connected 
with U, 

Ad e'"'u2= u , -E[u , ,  U ~ ] + ~ E ~ [ U , ,  [U,, U,]]+ 

= u2+ &U, ( 2 6 )  

where [U,, u2] = -ul can be directly taken from table 1. The adjoint representation of 
the Lie algebra is summarized in table 2. 

Because a linear combination of the five vector fields determines the general 
symmetry of (21) we can use a combination of the vector fields to classify the types 
of solution. By using the adjoint algebra we are able to distinguish five different types 

Table 1. Lie algebra of the kinetic equation. 

~~ ~~ ~~ ~~ ~~ 

Table 2. Adjoint representation of the Lie-algebra. 
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of solutions. Using the adjoint representation the basic fields of an optimal system are 
given by 

v ' =  V , + V , + K V 4  

U" = V I  + 0, 
#, = 

0," = v2 + U, 
U"= U,. 

In the following, we demonstrate that these combinations of symmetries produce 
essential types of solutions. We mention that one obtains further solutions of ( 2 1 )  by 
applying finite group transformations to these solutions (Olver 1986). 

4. Group invariant solutions 

In order to obtain the group invariant solutions (similarity solutions) let us first consider 
the combination of v2 and vj by 

w = AV*+ U,. (27) 

We introduce here the parameter A to demonstrate that not only vi" will give a specific 
similarity solution but also a linear combination of v2 and v3  with arbitrary coefficients. 
We choose first this simple combination of vector fields for clarity of representation. 
As we will see, any other combination of vector fields containing v2 will lead to the 
same solution type. The corresponding finite transformation to (27) reads 

i= t eAP i = u e '  (28) 

where E is the group parameter. The group invariant combinations of these relations are 

( 2 9 )  

izx e - A ~ / ( ~ + l l  

p + 1  = tx '+ l  i l / A / < =  

which suggest the similarity variable [ and the similarity solution U([) to be 

[ = tx'+' u(x, 1 )  = t""([).  ( 3 0 )  

Substitution of the similarity solution into (21) results in 

To reduce ( 3 1 )  to the standard form of Kummers's equation we rescale 5 by z = A[ 

B 
zu"+ - + 1 - z  U'-- [: 1 A ( y + l ) U = O .  

The complete solution of Kummer's equation is given by 

u ( z )  = C , M ( a ,  b, z ) +  C,U(a. b, z )  ( 3 3 )  

where a = B / A ( y +  l ) ) ,  and b = l / A +  1 ,  C, and Cz are arbitrary constants, and b # n. 
For non-integer values of b this solution can be given by Pochhammer's function, also 
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called the confluent hypergeometric function, which consists of a convergent series 
for all z. An alternative representation of the solution (33) turns out to be 

(34) ~ ( z )  = C,M(a, h, z)+ C,z'-hM(a - h+ 1,2-  b, z)  

where M(a,  b, z) is given by the series 

and (a)* ,  ( b ) k  are Pochhammer's symbols defined by 

If we consider b to be a natural number then Kummer's equation is an eigenvalue 
problem in which u(z) is limited for z + 0 and might not increase stronger than a power 
of z for z + w. The eigenvalues A of 

ZV"+ ~ ' { m  - z)+ AV = 0 (37) 
are then given by A = n - m + 1 with n = m - 1 ,  m, . . . . The corresponding eigenfunc- 
tions are generalized Laguerre polynomials L:"-')(Z). The eigenvalues for m = b = 2 
and a = 1 + 2 / ( d ( y + l ) )  determine the product d ( y + l ) = - 2 / n  and the generalized 
Laguerre polynomial is L!,')(z). We mention that a restriction of the vector field given 
in the adjoint representation U'" = u2+ U) ( A  = 1 )  will lead to the solutions discussed 
by McCrady and Ziff (1987) and Corngold and Williams (1989). Kummer's type of 
solution is also obtained for the vector fields u2 including only scale invariance with 
respect to x and i. The corresponding similarity representation is given by 

< = txr+l u ( x ,  I )  = U(<) (38) 

and the reduced equation of (21) reads 

B 
bo,,+ ( 1  -A<)v, -- U = 0. (39) 

Y+l  
A scaling of < with z = A< will give the standard form of Kummer's equation. The 
similarity representation of the combination vi = U, + U,+ K U ~  yields 

< = {(r+ 1) -X"'}(t + K )  

This solution inserted in (21) gives also Kummer's equation. A subgroup of vi with 
K = 0 is obtained by combining U ,  + u1 which also gives Kummer's equation after 
reduction of (21). The corresponding similarity representation is given in table 3. 

Another type of similarity reduction can be obtained if  we examine the linear 
combination of U, and u4 by 

(41) 

Here we introduce A in  a similar way as above. The finite transformation for this 
combination can be written as 

w = U, + Au4. 

i Y + '  = ( y +  I ) a  +x'." 

; = U  exp[A(y+l)(fA~'+t&)] .  (42) 

; = A f + t  
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Table 3. Summary of similarity solutions for the fragmentation equation (IZ), (+ = Y + 1). 

If we use the special solution u(x) = l / xR/"  we obtain from (42) another solution 
u(x ,  1 )  which reads 

where C is an arbitrary constant. The general reduction of this subgroup can be 
obtained by the similarity representation 

5 X Y + '  - Cf u(x, 1 )  =exp(fAct')u(C) (44) 

where e is given by c = ( y +  l)/A. The corresponding ordinary differential equation is 

d d ( y + l ) + 2  
U = 0. 

C(Y+l) 
u,,-;Cu,- (45) 

where we have replaced A and B by the definitions used above (A = -d and B = 
-{d(y+1)+2}). A scaling of the similarity variable i by z = m [  will again 
transform (45) to a standard equation (Kamke 1977) 

v"-zu'-au=O (46) 

where primes denote differentiation with respect to z, and a is given by a =  
( d ( y + l ) + 2 ) / ( d ( r + l ) ) .  The general solution of this O D E  can be given by a special 
type of Fox function (Braaksma 1964) 

or equivalently by Maitland's generalized hypergeometric functions, which are also 
called Wright functions: 

The Wright function (Mathai and Saxena 1978) are defined as 
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If we choose the parameters to be d / c = 2  and - ( d ( y + l ) + Z ) / ( c ( y + l ) ) ,  equation 
(45) can be solved by Hermite polynomials. The given restrictions for the parameters 
inthiscasecanbesummarizedindA=2(y+1)andA=-(n+l)(y+1)2.Ifwetransform 
u ( z )  on the other hand by u ( z )  = u ( z )  exp(z2/2) we get 

U " + Z U ' + ( l  - a ) u  = o  (50) 

u(z) =& { exp(-z2/2)( C ,  + C, J exp(z2/2) dz)], 

assuming that (1 - a )  = n + 1 we can derive solutions u ( z )  in the form 

(51) 

A further similarity solution is generated by the vector field U,. The similarity 
variable is just the time variable (l= t).  To the symmetry uI corresponds the similarity 
solution u(x, 1 )  = exp(Afx'+')u(<). Substitution of this similarity solution into (21) 
gives the reduction 

This ODE can be integrated by a separation of variables to U(() = Dg6/[A"+')1. 
The last vector field of our optimal system which remains to be discussed is U"= U,. 

Since we have here a translational symmetry in time it is easy to get the similarity 
representation by < = x  and u ( x ,  t )  = U((). The reduced equation for this class follows 
straightforward from (21) to be 

Atu, + Bu = 0. (53) 
An integration gives U(() = Cc-6'A with C as a constant of integration. 

A summary of the different similarity solutions ordered by the type of ODE is given 
in table 3. In table 3 we also give the similarity representation of the different symmetry 
groups following from the optimal system. We see that a classification by ODES is 
compatible with the optimal system. 

By performing the similarity analysis we are able to classify four types of solutions 
for equation (11). Three subgroups reduce to Kummer's equation and three others to 
Weber's ODE (Fox function), a scaling solution in the time variable, and spatial scaling, 
respectively. If we have the solutions on hand we can ask for the asymptotic behaviour 
t m of the similarity solutions. For f + m and txv+' = o =constant we obtain for case 
(1) of table 3 

x " u ( w )  for uz and model (ii), (iii) 
for u2 and model (i) lim n ( x ,  

I-m 

for Au2+ u3 and A < O  
for Au2+ u3 and A > 0 (: lim n(x, I)= 

,-m 

lim n ( x ,  t ) = O  for uI + U,+ K V ~  for all models. 
r-m 

For case (2) the solution n(x, t )  tends to 0 for f +Co. In  case (3) we have 

lim n(x, t) = D eAo lim f'/('+" 
z-m I -m 
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Figure 1. Scaling behaviour for the similarity solution of Kummer type in case o f  model 
(ii).Themadel parametersare v=4110,!3 = 2 . 0 , h =  I .Oandx~[O,  101,Thedifferentcurves 
correspond, from top 10 bottom, to times I = 1 x IO-’, 2 x  IO-’, 4 x  8 x  IO-’, respec- 
tively. 

We see that only for model (ii) and (iii) a scaling behaviour like n(Ax,  f+cu) I , ,7+~=Y = 
A”x” is present. In figure 1 we have plotted a similarity solution of Kummer type for 
model (ii) under the restriction C ,  = 1 and C, = 0. We plotted the similarity solution 
for four fixed times f. Even for a fixed f we can detect a scaling regime which gives 
n ( x ,  t ) - x ”  for x+O. 

5. Conclusions 

We demonstrated that by applying Lie’s similarity method to the linear PDE (8) resulting 
from the integro-differential equation (5) a great variety of solutions is obtained. Some 
of these solutions for the initial value problem n(x ,  f = 0) = S(x - L )  were discussed 
by McGrady and Ziff (1987). These authors made a special ansatz for the solution to 
obtain Kummers solution. Our procedure delivers these special type of solution and 
several other for fragmentation processes of different type. We find that our solutions 
show a scaling behaviour for small spatial values if we consider breakup kernel (ii) 
and (iii). For this spatial regime we demonstrated that n ( x ,  1)  behaves asymptotically 
as x”  for x+O. 
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